Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene
نویسندگان
چکیده
In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.
منابع مشابه
Optical phonons in twisted bilayer graphene with gate-induced asymmetric doping.
Twisted bilayer graphene (tBLG) devices with ion gel gate dielectrics are studied using Raman spectroscopy in the twist angle regime where a resonantly enhanced G band can be observed. We observe prominent splitting and intensity quenching on the G Raman band when the carrier density is tuned away from charge neutrality. This G peak splitting is attributed to asymmetric charge doping in the two...
متن کاملMass-related inversion symmetry breaking and phonon self-energy renormalization in isotopically labeled AB-stacked bilayer graphene
A mass-related symmetry breaking in isotopically labeled bilayer graphene (2LG) was investigated during in-situ electrochemical charging of AB stacked (AB-2LG) and turbostratic (t-2LG) layers. The overlap of the two approaches, isotopic labeling and electronic doping, is powerful tool and allows to tailor, independently and distinctly, the thermal-related and transport-related phenomena in mate...
متن کاملRobustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding
Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the...
متن کاملQuantum Monte Carlo calculation of the binding energy of bilayer graphene.
We report diffusion quantum Monte Carlo calculations of the interlayer binding energy of bilayer graphene. We find the binding energies of the AA-and AB-stacked structures at the equilibrium separation to be 11.5(9) and 17.7(9) meV/atom, respectively. The out-of-plane zone-center optical phonon frequency predicted by our binding-energy curve is consistent with available experimental results. A...
متن کاملPhonon-induced many-body renormalization of the electronic properties of graphene.
We develop a theory for the electron-phonon interaction effects on the electronic properties of graphene. We analytically calculate the electron self-energy, spectral function, and the band velocity renormalization due to phonon-mediated electron-electron interaction, finding that phonon-mediated electron-electron coupling has a large effect on the graphene band structure renormalization. Our a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012